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1. In a former paper (these PROCEEDINGS, Feb., 1922) Professor Veblen .
and the writer considered the geometry of a general space from the point
of view of the paths in such a space—the paths being a generalization on
the geodesics in Riemannian space. It is the purpose of this note to de-
termine the spaces whose paths may be brought into one-to-one corre-
spondence with the paths of a given space, and to consider the degree of
arbitrariness involved in our analytical definition of the paths.

2. The equations of the paths in a space S. are taken in the form

d’x ; dx"dx
T, - =0, 2.1
—+T o 2.1)

where ' (i = 1, ..., n) are the coordinates of a point of a path expressed
as functions of a certain parameter s the same for all the paths, and I',g
are functions of the #’s such that I',; = I';,, When the space is Rie-
mannian, with the quadratic form :
ds? = gydx’ do’, 2.2)
equations (2.1) define the geodesics of the space, the functions I being
the Christoffel symbols of the second kind formed with respect to (2.2).
Thus in choosing (2.1) to define the paths of a general space we have
singled out a parameter s which is to be the same for all paths. If we
change the independent variable in (2.1), it is found that the resulting
equations have the same form only when this parameter is as 4 b, where
a and b are arbitrary constants.
3. Suppose we consider a second space S, and write the equations of
the paths in the form ) .
ax' i dx® dxP '
o | A R 0. 3.1)
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We say that corresponding points in S, and S’, are those for which the
coordinates x have the same values in the two spaces. If a path Pin S,
is to correspond to a path P’ in S’,, there must be a relation of the form .
s = f(s") connecting the parameters s and s’ at corresponding points. In
order that the functions x° of s’ shall satisfy (2.1) and (3.1) we must have
(- r':'.a)d—"id—"ﬂ (v - r) o 42
o ds ds _ ds ds Gj =1 1). (3.2)
f2 dx’ dx’ oo
ds ds
From these expressions it follows that we must have

Y. i i \d©|dx" dif
I’ e—T% )_—(I"{, I, )—]—— —=0@G,7=1,...,n). (3.3
[( s~ Tap |- k") bl s G 7 n). (3.3)
If it is desired that all the paths of S, can be brought into one-to-one cor-

respondence with those of S’,, these equations must be satisfied identically

i

by the quantities%x—, otherwise we should have differential equations
s

of the first order satisfied by all the solutions of (2.1). The conditions
that these equations vanish identically are .

% =T, T =Th (4, 1, k F), (3.4)
and »
T%4—20") = T} —2T), T —T"% = Th—Th G, i, k ) (3.5)
Equations (3.5) are equivalent to

T =Tu+ 20, T =Ty + o). (3.6)
where the functions ¢; (z = 1, ..., %) of the «’s are defined by (3.6). By
making use of equations (4.2) of the former paper which give the relations
between the I''s in one set of coordinates x and those for another set, we
prove that the functions ¢; in (3.6) are the components of a covariant
vector.

If we substitute the expressions for I''g, from (3.4) and (3.6) in (3.2) we
have

fl/ _ dxa .

f * ds

If we substitute in the right-hand member the expressions for the x’s as
functions of s for a given path, we get the relation between s and s’ in order
that these functions shall satisfy (3.1) also. Consequently (3.4) and
(3.6) are sufficient as well as necessary that the paths of S, and S’, be
in one-to-one correspondence. .
We are in a position now to determine under what conditions the paths
of S, are defined also by equations (3.1). From our definition of paths

3.7
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it follows that s’ must be the same for all paths just as sis in (2.1). From
(3.7) it is seen that for this to be the case we must have

%‘fi—"; =¥ (), 3.8)

¥ being the same function for all the paths. Differentiating and making
use of (2.1), we obtain
dx® dx® ’
af 5 ST S) 3.9
Pap —— — ¥'(s) (3-9)

where ¢,g are the components of the covariant derivative of the vector
¢, as defined in the former paper, that is

Cap = Z?(P: — oilep. (3.10)

Consider first the case when ¢ in (3.8) is constant, that is when (2.1)
admits a linear first integral. From (3.9) it follows that S, must be such
that there exists a vector ¢, so that ¢.s + ¢g, = 0. When this con-
dition is satisfied by one, or more vectors, the equations of the paths can
be written in two, or more ways, in the form (2.1). Spaces which admit a
family of parallel covariant vectors, considered by the author in a former
paper (these PROCEEDINGS, July, 1922) are of this kind.

If ¢’ = const. in (3.9), equations (2.1) would have to admit a quadratic
first integral. Another case of this sort arises when ¢’ = ay? + b, where
a and b are constants. Although these special cases are interesting and
lead to types of spaces for which the equations (2.1) are not unique, it is
clear that this is not possible for a general S,. Similar results hold when
¥’ is not constant. For on the elimination of s from ¢ and ¢’ in (3.8)
and (3.9) we should obtain a relation between the first derivatives of the
x’s, which could not hold for all the paths. Hence:

For a general space the equations of the paths can be writlen in the form
(2.1) in only one way, the parameter s being such that it may be replaced by as
-+ b, where a and b are arbitrary constants.

4. The components of the curvature tensor in S, are defined by

e e LT e (4.1)
If we indicate by primes the functions for S,’, we have from (3.4) and
(3.6)

B =B G, i, k. | %),

B'ix = Bijn + o1 — o (G, 1, B F),

B'iti = Bhi + op — ¢ 01 G 5, k ), (4.2)

B"; = Biji + ¢ii — ¢ G, 1 ¥),

B'i =By — ¢ii + 2055 — wio; (G, 1 ),
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where ¢,g is the covariant derivative of ¢,. In these formulas there are
‘no summations.
5. By definition the contracted tensor is given by

R,‘j =3 B?ja (5.1)
Hence from the above formulas we obtain
R’y = Ry + ney — 0ji— (n — 1) i 9; (.2)
R'i = Ry + (n—1) (ei— o). '
Since Bjy = — By, a skew symmetric tensor of the second order is
defined by
) S,'j =23 B:,'j. . (5.3)
Now we have :
S’ =Sy + (n+ 1) (¢ji — @i)- (5.4)
From (5.1), (4.1) and (5.3) we have :
Ry — Ry = S;

Hence S;; = 0 is a necessary and sufficient condition that R;; be sym-
metric. ‘This result was established by Veblen in a paper presented to the
Academy, April 25, 1922.
Veblen (these PROCEEDINGS, July, 1922) has shown that the identity
of Bianchi, namely
B;klm + B;lmk + B;mkl =0 (55)
holds in the geometry of paths; an equivalent result was announced by
Schouten (Jahr. Deut. Math. Ver., vol. 30, 1921, Abt., p. 76). In con-
sequence of (5.5) we have from (5.3) _
Sie + Sjpi + Sy = 0, (5.6)
or in other form
9S;; , OS;z , OSw
o o | ow
We have shown (Bull. Amer. Math. Soc., 1922) that (5.7) is a necessary
and sufficient condition that S;; is expressible in the form

=0 (5.7

sij = — -— ’ (5‘8)

where ¢; is a covariant vector, any one component being arbitrary and the
others being determined by quadraturés. As an immediate consequence
we have the theorem: '

If S, is any geometry of paths, spaces S’,, can be found whose paths are in
one-to-one correspondence with the paths of S, and such that the tensor R’ is
symmetric; the determination of S, snvolves an arbitrary function of the «'s.

6. For a Riemann space the tensor R;; is symmetric. Consequently
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from (5.4) it follows that if S, and S’, are Riemann spaces, we must have
@5 = @i that is ; must be a gradient.

Suppose now that S, is any space From the preceding theorem it
follows that we can find a space S,” whose paths are in one-to-one corre-
spondence with S, and such that S”; = 0. If S, is a Riemann space in
correspondence with S,, and consequently with S,”, it follows from (5.4)
that the vector giving the relation between S,” and S,’ is the gradient of
a function ¢. The algebraic consistency of equations of the Torm (cf.
(5.3) former paper)

. g’ia B’?kl + g’aj ’:"kl =

leads to more than n (n + 1)/2 equations. Hence when the expressions
for B’ as given by equations of the form (4.2) are substituted in these
equations of condition, we have more than n(» + 1)/2 algebraic condi-
tions upon the n(n 4 1)/2 second derivatives of ¢. Consequently the
functions B"j, for S,” are subject to conditions and hence S, cannot be
arbitrary, if its paths are to be in one-to-one correspondence with the
geodesics of a Riemann space. It follows also from these remarks that the
final theorem of the former paper does not give the complete characteriza-
tion of geometries whose paths can be 1dentxﬁed with the geodesics of a
Riemann space.

7. Suppose that S, is a Riemann space. If S,’ also is to be Riemannian,
it follows from (5.4) that ¢; must be the gradient of a function ¢. If the
components of fundamental quadratic tensors of S, and S,’ are denoted
by gi; and g’; respectively, we must have

og’ a
bx;'] - g aj zk g’ia Ijk = Oy

which in consequence of (3.4) and (. 6) becomes
’
Y — gy Th — e Th — 25 25 — gl — glaa; = 0. (1.1
If g and g’ denote the determinants of g; and g’;;, we have (Emstem, Ann.
Phys., 49, 1916, p. 796).
1oVg_, 45085 _
Vg ox* : Y
Multiplying (7.1) by ¢'¥, summing for ¢ and 7, and making use of (7.2),
we obtain an equation from which it follows that
’

g

= T (7.2)

= —— 1
¢ 2.(n+ 1) 8

where C is a constant.
Again, if we put A;; = ¢74® g;;and indicate by A, the covariant derivative
of A;; with respect to the fundamental form of S,, we obtain

Age + Ajps + Apg = 0,
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which is the condition that the equations of geodesics admit the quadratic

integral A, d; Z—xJ = comst. ‘These results are due to Levi-Civita
s ds

(Annali, 24, 1896, pp. 273, 276; also Aunalen, 54,1901, p. 188), who has
found all the Riemann spaces which admit of geodesic representation.
When in particular it is assumed that S, and S,’ possess corresponding
orthogonal systems, and these are taken ds pargmetric we have
rh= % gy o 1% gy L%

2g,, ox' 2g,, bx, 2g;; Ox; '
and the equations (3.4) and (3.6) are readily solved; giving

”I 9 £ir
i = 1 ] i =
8 j-|1¢, hl e ('h+c) Y +c’

where 7 # 7 in the first product, y; is an arbltrary function of +* alone, and
¢ and C are arbitrary constants (Pirro, Rend. Palermo, 9, 1895, p. 169;
also, Levi-Civita, l.c., p. 287).

NUMBER OF SUBSTITUTIONS OMITTING AT LEAST ONE
LETTER IN A TRANSITIVE GROUP
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In an article published in Amer. J. Math., 26, 1904, p. 1, H. L. Rietz
proved the theorem that in “a primitive group G of degree# of composite
order g there are more than g/(x -+ 1) substitutions of degree less than #,
where x is the number of systems of intransitivity of the sub-group which
leaves a given letter fixed.” If G is a transitive group which is not neces-
sarily primitive this subgroup G, is of degree # — «, where a isnot neces-
sarily unity, and may be supposed to have a transitive constituents of
degree 1 in addition to its transitive constituents whose degrees exceed 1.
If x + 1 represents the total number of these transitive constituents the
theorem quoted above remains true for every possible transitive group
except the regular groups, as may be inferred from an abstract which
appeared in Bull. Amer. Math. Soc., 8, 1902, p. 17, where the exception
noted above is, however, not stated.

The object of the present note is to furnish a very elementary proof of
this general theorem, as follows: If each of the substitutions of G, involves



